
P1: GRA

International Journal of Theoretical Physics [ijtp] pp657-ijtp-454171 November 11, 2002 22:54 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 41, No. 11, November 2002 (C© 2002)
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We analyze the onset of classical field configurations after a phase transition. Firstly, we
motivate the problem by means of a toy model in quantum mechanics. Subsequently, we
consider a scalar field theory in which the system-field interacts with its environment,
represented both by further scalar fields and by its own short-wavelength modes. We
show that for very rapid quenches, the order parameter can be treated classically by the
time taken for it to achieve its ground state values (spinodal time).
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1. INTRODUCTION

The emergence of classical behavior from a quantum system is a problem of
interest in many branches of physics (Giuliniet al., 1996; Molmer, 1997a,b Paz
and Zurek, 2000), from the foundations of quantum mechanics, condensed matter,
and quantum optics, to quantum computing and quantum field theory. In the last
few years, experimental evidence supports our theoretical understanding of the
quantum to classical transition and also opens new avenues in the development
of essential tools to understand the more hidden mysteries of the quantum world
(Bruneet al., 1996; Friedmanet al., 2000; Monroeet al., 1996; Myattet al., 2000;
Rauschenbeutelet al., 2000; Tesche, 2000; van del Walet al., 2000).

The quantum to classical transition, for a point particle, say, involves two
different but very related conditions. The first one is that there should becor-
relations, i.e., the coordinates and momenta of a particle should be correlated
in phase space, according to the classical equations of motion. For example, the
Wigner function should have a peak at the classical trajectories. The second and
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equally important condition is the elimination of quantum interference between
these classical trajectories, i.e.,decoherence. Once decoherence eliminates inter-
ference terms (absent in the “classical world”), the Wigner function becomes a
good candidate for a classical probability distribution. The generalization from
particles to fields is straightforward, in principle, with the same attributes of cor-
relations and decoherence.

The onset of classical behavior is a natural consequence of a quantum open
system, triggered by the interaction between the system of interest and its envi-
ronment. The coupling strength between system and bath sets the timescale after
which we can consider our system as classical, according to both of the conditions
we mentioned before. This temporal scale is usually called thedecoherence time
tD. After this decoherence time we do not have macroscopic states in coherent su-
perpositions anymore, and a probability distribution can be extracted that evolves
by means of a generalized Fokker–Planck equation.

Our concern in this paper will be the quantum to classical transition of a
single scalar order parameter field during continuous transitions, with the simplest
double-well potential. This is an idealization of the phase transitions that are ex-
pected to occur at the GUT and EW scales in the standard big-bang cosmological
model (Kolb and Turner, 1990).

An analysis of phase transitions in quantum field theory that takes the nonequi-
librium nature of the dynamics into account from first principles has only recently
begun to be addressed. In particular, the naive picture of a classical order parameter
(inflaton or Higgs) fieldφ rolling down an adiabatic effective potential, that was
once a mainstay of cosmological field theory modeling, has been shown to be sus-
pect (Cormier and Holman, 2000). Alternatively, the suggestion by Kibble (1980)
that while a nonadiabatic approach is essential, causality alone can set saturated
bounds on time and distance scales during a transition, has been shown to be only
partly true. The onset of classical behavior is absolutely crucial in the work of
Kibble (1980) in that the experimental signal for the causal bound is the produc-
tion of classical defects at a prescribed density. Topological defects are inevitable
in most transitions, and they may have played a fundamental role in the formation
of large scale structure (strings) (Zurek, 1985, 1996). Moreover, superabundance
of some topological defects may contradict the observational evidence (magnetic
monopoles).

In all the above-mentioned examples there is an order parameter that evolves
from the false to the true vacuum of the theory: the Higgs fields in GUT and EW
phase transitions, the inflaton field(s) in inflationary models, etc. Although these
are quantum scalar fields with vanishing mean value (due to the symmetry of the
initial quantum state), the order parameter is usually treated as a classical object.
Our aim in this paper is to justify this assumption.

Our approach follows the analysis started by two of us in Lombardo and
Mazzitelli (1996), where we studied the emergence of classical inhomogeneities
from quantum fluctuations for a self-interacting quantum scalar field. We have



P1: GRA

International Journal of Theoretical Physics [ijtp] pp657-ijtp-454171 November 11, 2002 22:54 Style file version May 30th, 2002

Classical Behavior After a Phase Transition: I 2123

investigated there the decoherence induced on the long-wavelength field modes
by coarse-graining the field modes with wavelength shorter than a critical value,
in order to show how the system becomes classical because of the interaction
with its environment (in that case composed of the short-wavelength field modes
of the same field). For phase transitions the classicality of the order parameter
can be analyzed along the same lines by extending the model to accommodate
spontaneous symmetry breaking.

This is a difficult problem because, as has been pointed out in the literature,
and as we will stress in what follows, nonperturbative and non-Gaussian effects
are relevant in the analysis of phase transitions. As a trial run for this analysis
we begin by presenting a toy model in which we will study the spread of a wave
packet initially centered around the local maximum of a double-well potential,
paying particular attention to the influence of the environment on the Wigner
function and on the reduced density matrix. Only later we will extend our results
to quantum field theory phase transitions.

The paper is organized as follows. In the next section we study the evolu-
tion of a wave packet initially centered on the top of a double-well potential. We
describe the exact numerical evaluation of the evolution of the wave packet. We
show that as the coupling between the system and the environment decreases, the
decoherence time increases. Because of the nonlinearities of the potential, when
the coupling vanishes there is no classical limit, not even classical correlations.
In Section 3 we analyze the full problem in quantum field theory. Here, the situa-
tion is somewhat different. Although, again, the decoherence time increases as the
coupling to the environment decreases, so does the spinodal time, the time for the
order parameter to achieve its classical ground-state values. Thus, however weak
the coupling, decoherence can still occurbeforethe field has fallen to its classical
level.

It is important to say that the issue of how the system evolves into the classical
theory has been addressed in Habibet al.(1996) and Cooperet al.(1997). For some
models, it has been shown that classicality emerges as a consequence of profuse
particle creation. A nonperturbative large occupation number of long-wavelength
modes produces, on average, a diagonal density matrix. This dephasing effect
occurs at late times. Here we will consider a different model in which classicality
is an early time event.

Finally, in Section 4, we present our final remarks and conclusions.

2. TOY MODEL: DOUBLE-WELL POTENTIAL AND ENVIRONMENT

The simplest field theory that permits a phase transition is that of a single real
scalar fieldφ, with action

S[φ] =
∫

d4x

{
1

2
∂µφ∂

µφ + 1

2
µ2φ2− λ

4!
φ4

}
(1)
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with (µ2 > 0) Z2 symmetry breaking. At high temperature the symmetry is re-
stored. As we shall see later, a phase transition induced by a sudden temperature
quench can be described by an effective field theory in which there is a change of
sign in the mass term of the scalar field

Seff[φ] =
∫

d4x

[
1

2
∂µφ∂

µφ − 1

2
m2(t)φ2− 1

4!
λφ4

]
, (2)

wherem2(t) = M2 > 0 for t < 0 andm2(t) = −µ2 for t sufficiently positive. This
change of sign inm2(t) breaks the globalZ2 symmetry for positivet .

Understanding this transition, for even such a simple system, is difficult.
As a preliminary exercise, we start by considering a toy model composed of a
particle and a quantum anharmonic oscillator (the “system”), linearly coupled
to an environment composed of an infinite set of harmonic oscillators. The total
classical action is given by

S[x, qn] = Ssyst[x] + Senv[qn] + Sint[x, qn]

=
∫ t

0
ds

[
1

2
M

(
ẋ2−Ä2

0(t)x2− λ
4

x4

)

+
∑

n

1

2
mn
(
q̇2

n − ω2
nq2

n

)]−∑
n

Cnxqn, (3)

wherex and qn are the coordinates of the particle and the oscillators, respec-
tively. The quantum anharmonic oscillator is coupled linearly to each oscillator in
the bath with strengthCn. In analogy withm2(t) of (1) we consider the simplest
possible case of aninstantaneousquench, in whichÄ2

0(t) = Ä2
0 whent < 0 and

Ä2
0(t) = −Ä2

0 whent > 0. The unstable particle, coordinatex, has an initial ther-
mal distribution at temperatureT , for which〈x̂〉 = 0. Fort > 0, it finds itself on the
unstable hump of the potential and falls toward its stable minima at〈x̂2〉 = 2Ä2

0/λ.

2.1. The Environment

In the absence of an environment, and consideringλ = 0, this situation has
been discussed in detail by Guth and Pi (1991) and Kim and Lee (2000). In the
presence of an environment the relevant objects for analyzing the quantum to
classical transition in this model are the reduced density matrix and the associated
Wigner function:

ρr(x, x′, t) =
∫

dqn ρ(x, qn, x′, qn, t), (4)
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and

Wr(x, p, t) = 1

2π

∫ +∞
−∞

dy eipy ρr

(
x + y

2
, x − y

2
, t
)
. (5)

The reduced density matrix satisfies a closed master equation. This has been eval-
uated by Huet al. (1993a,b) for the quantum Brownian motion problem with
Ä2

0 positive. Following the same procedure, we can write a corresponding master
equation for the unstable particle (Zurek and Paz, 1994) by replacingÄ0 by iÄ0

in the Hu–Paz–Zhang result

i ∂tρr(x, x′, t) = 〈x|[H, ρr]|x′〉
−i γ (t)(x − x′)(∂x − ∂x′ )ρr(x, x′, t)

+ f (t)(x − x′)(∂x + ∂x′ )ρr(x, x′, t)

−i D(t)(x − x′)2ρr(x, x′, t). (6)

In (6), H = Hsyst− 1
2 MÄ̃2(t), whereÄ̃2(t), renormalizes the natural frequency of

the particle,γ (t) is the dissipation coefficient, andD(t) and f (t) are the diffusion
coefficients, which produce the decoherence effects. They depend on the properties
of the environment as

Ä̃2(t) = − 2

M

∫ t

0
dt′ cosh(Ä0t ′)η(t ′)

γ (t) = − 1

2MÄ0

∫ t

0
dt′ sinh(Ä0t ′)η(t ′)

D(t) =
∫ t

0
dt′ cosh(Ä0t ′)ν(t ′) (7)

f (t) = − 1

MÄ0

∫ t

0
dt′ sinh(Ä0t ′)η(t ′),

whereη(t) andν(t) are the dissipation and noise kernels, respectively,

η(t) =
∫ ∞

0
dω I (ω) sinωt

ν(t) =
∫ ∞

0
dω I (ω) coth

βω

2
cosωt,

and I (ω) = O(C2
n) is the spectral density of the environment.

The first term on the RHS of Eq. (6) gives the usual Liouville-like evolution;
the term proportional toγ produces dissipation (γ is the relaxation coefficient).
The term proportional to the diffusion coefficientD(t), which is proportional to
(x − x′)2 and positive definite, gives the main contribution to the decoherence
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since it produces a diagonalization of the reduced density matrix. Let us write the
reduced density matrix as

ρr[x, x′; t ] = G[x, x′, t ] exp

[
−(x − x′)2

∫ t

0
D(s) ds

]
. (8)

Inserting this expression into the master equation it is easy to to see that the dif-
ferential equation forG[x, x′, t ] contains the usual Liouville-term plus additional
contributions proportional toD, γ , and f . However, none of these additional terms
is imaginary with the right sign for diffusion. An approximate solution of Eq. (6)
is therefore (Zurek, 1994)

ρr[x, x′; t ] ≈ ρu
r [x, x′, t ] exp

[
−(x − x′)2

∫ t

0
D(s) ds

]
, (9)

whereρu
r takes into account the unitary evolution.

Alternatively, one can derive the following evolution equation for the reduced
Wigner function of the system (Pazet al., 1993):

Ẇr(x, p, t) = {Hsyst, Wr}PB− λ
4

x∂3
pppWr + 2γ (t)∂p(pWr)

+D(t)∂2
ppWr − f (t)∂2

pxWr. (10)

Let us concentrate on the evolution equation (10). The first term on the right-hand
side of Eq.(10) is the Poisson bracket, corresponding to the usual classical evolu-
tion. The second term includes the quantum correction (we have seth = 1). The
last three terms describe dissipation and diffusion effects due to coupling to the
environment. In order to simplify the problem, we consider a high-temperature
ohmic (I (ω) ∼ ω) environment. In this approximation the coefficients in Eq. (10)
become constants:γ (t) = γ0, f ∼ 1/T , andD = 2γ0kBT . The normal diffusion
coefficientD is the term responsible for decoherence effects and at high temper-
atures is much larger thanγ0 and f . Therefore, in Eq. (10), we may neglect the
dissipation and the anomalous diffusion terms in comparison to the normal diffu-
sion. As we saw in (9), it is the diffusion exponential in this equation that enforces
the approximate diagonalization of ˆρ in this coordinate basis.

It is important to note that this high-temperature approximation is well defined
after a timescale of the order of 1/(kBT) ∼ γ0/D (with h = 1). The relevant regime
of evolution for our systems takes place at times comfortably larger than this
timescale.

2.2. Numerical Analysis

We have solved Eq. (10) numerically, in the high-temperature limit, for dif-
ferent values of the diffusion coefficientD, in order to illustrate its relevance in
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the quantum to classical transition. Details are given elsewhere (Lombardoet al.,
2000). We have chosen as initial condition a Gaussian state centered atx0 = p0 = 0
with minimal uncertainty (σ 2

x = 0.5 andσ 2
p = 0.5). The Wigner function is initially

positive definite, and different from zero only near the top of the potential. We have
set the coupling constantλ = 0.01, the renormalized frequenciesÄ̃ = ωn = 1 (we
are measuring time in units of̃Ä) and the bare masses also equal to one.

It is illustrative to examine first the exact result when the environment is ab-
sent (for this case we have solved numerically the Schr¨odinger equation). Initially
the Gaussian Wigner function begins to squeeze in thex = p direction, and be-
fore the spinodal time (tsp∼ 2.3) it becomes a nonpositive function (Fig. 1). Our
definition of the spinodal time is that time at which〈x̂2〉t = 2Ä2

0/λ, its symmetry-
breaking value. During the evolution, the Wigner function covers all the phase
space (Fig. 2) and it is clear that it is not possible to consider it as a classical
probability distribution. Although we started with a special initial state (Gaussian
with minimum uncertainty), the nonlinearities of the potential make the Wigner
function a nonpositive distribution.

Fig. 1. The Wigner function fort = 2 < tsp= 2.3, when no environment is considered.
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Fig. 2. The Wigner function fort = 4. As the function is not positive definite, there
is no classical correlation.

Let us now consider a coupling with an environment such that the normal
diffusion coefficient isD = 0.01. As expected, the evolution of the Wigner function
is similar to the previous one at early times (Figs. 3 and 4). However, as can be seen
from Figs. 5 and 6, at long times it becomes positive definite and peaked around
the classical phase space.

The effect of the environment is more dramatic for larger values of the dif-
fusion coefficient. In our last example,D = 1, the quantum to classical transition
takes place almost instantaneously, even before the quantum particle pass through
the spinodal point (Figs. 7 and 8).

It is interesting to note that as the diffusion coefficient grows, the amplitude
of the Wigner function decreases. This is due to the fact that the decoherence
increases withD. The reduced density matrix diagonalizes. As a consequence, its
‘Fourier transform,’ the reduced Wigner function, spreads out.

Our numerical results show explicitly that the existence of the environment
is crucial in the quantum to classical transition. The decoherence time depends on
the temperature and the coupling between system and environment through the
diffusion coefficientD (Zurek, 1986).

3. PHASE TRANSITIONS IN FIELD THEORY

We can now tackle the full quantumφ field theory of (1). A simplified analysis
of the model has been given elsewhere (Lombardoet al., 2001). As before, the
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Fig. 3. The Wigner function fort = 2, including an environment with diffusion coefficient
D = 0.01.

onset of classical behavior is due to the environment. For the infinite degree of
freedom quantum field, the field ordering after the transition begins is due to the
growth in amplitude of its unstable long-wavelength modes. For these modes the
environment consists of the short-wavelength modes of the field, together with
all the other fieldsχa. with which theφ inescapably interacts (Lombardo and
Mazzitelli, 1996). The inclusion of explicit environment fieldsχa both reflects on
the fact that a scalar field in isolation is physically unrealistic, as well as provides
us with a systematic approximation scheme.

Although the system field can never avoid the decohering environment of
its short-wavelength modes, to demonstrate the effect of an environment we first
consider the case in which it is taken to be composed only of the fieldsχa. The
short-wavelength modes of theφ field will be considered afterwards. Specifically,
we take the simplest scalar classical action

S[φ, χ ] = Ssyst[φ] + Senv[χ ] + Sint[φ, χ ], (11)

Ssyst[φ] =
∫

d4x

{
1

2
∂µφ∂

µφ + 1

2
µ2φ2− λ

4!
φ4

}
,
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Fig. 4. The same Wigner function (as in Fig. 3) for timet = 4. It is not positive definite.

Senv[χa] =
N∑

a=1

∫
d4x

{
1

2
∂µχa∂

µχa − 1

2
m2

aχ
2
a

}
,

Sint[φ, χ ] = −
N∑

a=1

ga

8

∫
d4xφ2(x)χ2

a (x), (12)

whereµ2, m2 > 0.
We see that the quantum mechanics action of (3) is, in large part, a simplified

version of (11). To make any progress it is important that the environment be as
simple as possible. To that end we have included no explicit self-interaction of the
χa fields, which interact through theφ field as intermediary. However, there is one
significant difference in that the interactions of theφ field with the environment
in (12) arequadratic, and not linear as in (3). The more conventional choice of a
linear coupling to the environment was made in the previous section (and Lombardo
et al., 2000) to give a model directly comparable to similar particle models with
no symmetry breaking, for which much work has been done. Although it has been
adopted for quantum field theories (Kim and Lee, 2000) a linear–linear coupling



P1: GRA

International Journal of Theoretical Physics [ijtp] pp657-ijtp-454171 November 11, 2002 22:54 Style file version May 30th, 2002

Classical Behavior After a Phase Transition: I 2131

Fig. 5. The same Wigner function (as in Fig. 3) fort = 10.

is inappropriate and we have taken the simplest quadratic–quadratic couplings in
Sint for convenience. The extension to Yukawa couplings is straightforward, and
will be given elsewhere. We are reminded that for nonlinear couplings likexnqm

i
in the quantum mechanical problem, one expects the master equation to contain
terms of the formi D (n,m)(t)(xn − x′n)2ρr. We shall find a similar effect here. The
nonlinear coupling to the environment is crucial to our conclusions.

Further, in our present model, the environment has a strong impact upon the
system-field, but not vice versa, whenever possible. The simplest way to implement
this is to take a large numberN À 1 ofχa fields with comparable massesma ' µ
weakly coupled to theφ, with λ; ga ¿ 1. Thus, at any step, there areN weakly
coupled environmental fields influencing the system field, but only one system
field to back-react upon the explicit environment.

3.1. Initial Conditions

Before we examine the model in detail, there are some general observations to
be made about initial conditions and the way in which the transition is implemented.
Like any simple scalar theory the model displays a continuous transition at a
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Fig. 6. The same Wigner function, (as in Fig. 3) fort = 15. Only for t À tsp do we have
classical correlations and a positive Wigner function.

temperatureTc,

T2
c =

µ2

λ+∑ ga
À µ2.

The environmental fieldsχa reduceTc, and in order thatT2
c À µ2, we must

take

λ+
∑

ga ¿ 1.

For order of magnitude estimations it is sufficient to take identicalga = ḡ/
√

N,
whereby

1À 1/
√

N À ḡ ' λ,

i.e. theχa “tadpole” diagrams completely overwhelm theφ self-interaction tadpole
diagram in generating theφ thermal mass.

With η =
√

6µ2/λ determining the position of the minima of the potential
and the final value of the order parameter, this choice of coupling and environments
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Fig. 7. The early time (t = 1) Wigner function for a diffusion coefficientD = 1.

gives the hierarchy of scales

µ2¿ T2
c = O

(
η2

√
N

)
¿ η2,

important in establishing a reliable approximation scheme. Further, with this choice
the dominant hard loop contribution of theφ field to theχa thermal masses is

δm2
T = O(ḡT2

c /
√

N) = O(µ2/N)¿ µ2.

Similarly, the two-loop (setting sun) diagram, which is the first to contribute to the
discontinuity of theχ -field propagator, is of magnitude

ḡ2T2
c /N = O(gµ2/N3/2)¿ δm2

T ,

in turn. That is, the effect of the thermal bath on the propagation of the environ-
mentalχ fields is ignorable.

This was our intention in model-making: to construct an environment that
reacted on the system field, but was not reacted upon by it to any significant
extent. We stress that this is not a Hartree or large-N approximation of the type
that, to date, has been the standard way to proceed (Boyanovskyet al., 1994, 1995;
Cooperet al., 1997; Ramsey and Hu, 1997) for aclosedsystem.
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Fig. 8. The same as Fig. 7 fort = 2. Classicality emerges before the spinodal time.

We shall assume that the initial states of the system and environment are
both thermal, at a temperatureT0 > Tc. We then imagine a change in the global
environment (e.g. expansion in the early universe) that can be characterized by a
change in temperature fromT0 to Tf < Tc. That is, we do not attribute the transition
to the effects of the environment-fields. On incorporating the hard thermal loop
tadpole diagrams of theχ (andφ) fields in theφ mass term leads to the effective
action forφ quasiparticles,

Seff
syst[φ] =

∫
d4x

{
1

2
∂µφ∂

µφ − 1

2
m2
φ(T0)φ2− λ

4!
φ4

}
,

wherem2
φ(T0) = −µ2(1− T2

0 /T2
c ) = M2 > 0. As a result, we can take an ini-

tial factorized density matrix at temperatureT0 of the formρ̂[T0] = ρ̂φ [T0]ρ̂χ [T0],
whereρ̂φ [T0] is determined by the quadratic part ofSeff

syst[φ] andρ̂χ [T0] by Senv[χa].
Yet again, the manyχa fields have a large effect onφ, but theφ field has neg-
ligible effect on theχa. Provided the change in temperature is not too slow,
the exponential instabilities of theφ field grow so fast that the field has pop-
ulated the degenerate vacua well before the temperature has dropped to zero.
Since the temperatureTc has no particular significance for the environment
field, for these early times we can keep the temperature of the environment
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fixed at Tχ = T0 = O(Tc) (our calculations are only at the level of orders of
magnitude).

Since it is the system-fieldφ whose behavior changes dramatically on taking
Tφ throughTc, in this paper we adopt aninstantaneousquench forTφ from T0 to
Tf = 0 at timet = 0, in whichm2

φ(T) changes sign and magnitude instantly, con-
cluding with the valuem2

φ(t) = −µ2, t > 0 that we cited in (1). Aninstantaneous
quench is sufficient to demonstrate the rapidity with which the environment forces
the system field to become classical. Meanwhile, for simplicity theχa masses are
fixed at the common valuem' µ.

3.2. Tracing out theχ Fields

At time t > 0, the reduced density matrixρr[φ+, φ−, t ] = 〈φ+|ρ̂r (t)|φ−〉 is
now

ρr[φ
+, φ−, t ] =

∫
Dχa ρ[φ+, χa, φ−, χa, t ],

where ρ[φ+, χ+a , φ−, χ−a , t ] = 〈φ+χ+a |ρ̂(t)|φ−χ−a 〉 is the full density matrix.
Since we would like to be able to distinguish between different classical system-
field configurations evolving after the transition, we will only be interested in
the field-configuration basis for this reduced density matrix (in analogy with the
quantum Brownian motion model of the previous section). The environment will
have had the effect of making the system essentially classical onceρr(t) is, effec-
tively, diagonal. [Our earlier comments on dephasing remain valid, and we stress
again that our understanding of what constitutes classical behavior is essentially
different from the dephasing effects found in Habibet al.(1996) and Cooperet al.
(1997).] Quantum interference can then be ignored and the system is said to have
decohered. At the same time, we obtain a classical probability distribution from the
diagonal part ofρr(t), or equivalently, by means of the reduced Wigner function.
For weak coupling there will be no ’recoherence’ at later times in which the sense
of classical probability will be lost.

Its temporal evolution is given by

ρr[φ
+
f , φ−f , t ] =

∫
dφ+i

∫
dφ−i Jr[φ

+
f , φ−f , t | φ+i , φ−i , t0] ρr[φ

+
i φ
−
i , t0],

whereJr is the reduced evolution operator

Jr[φ
+
f , φ−f , t | φ+i , φ−i , t0] =

∫ φ+f

φ+i

Dφ+
∫ φ−f

φ−i

Dφ− ei {S[φ+]−S[φ−]}F [φ+, φ−].

(13)
The Feynman–Vernon influence functionalF [φ+, φ−] (Feynman and Vernon,
1963) is defined as
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F [φ+, φ−] =
∫

dχ+ai

∫
dχ−ai ρχ [χ+ai , χ

−
ai , t0]

∫
dχaf

×
∫ χaf

χ+ai

Dχ+a
∫ χaf

χ−ai

Dχ−a exp
(
i {Senv[χ

+
a ] + Sint[φ

+, χ+a ]
)

× exp
(−i {Senv[χ

−
a ] + Sint[φ

−, χ−a ]}).
Beginning from this initial distribution, peaked aroundφ = 0, we follow

the evolution of the system under the influence of the environment fields, with
Hamiltonian determined from (11). From the influence functional we define the
influence actionδA[φ+, φ−] as

F [φ+, φ−] = expi δA[φ+, φ−]. (14)

The total coarse-grained effective action is

A[φ+, φ−] = S[φ+] − S[φ−] + δA[φ+, φ−].

We will calculate the influence action to one loop (two vertices) for largeN using
closed-time path correlators. It is the imaginary part that contains the information
about the onset of classical behavior. If1 = 1

2(φ+2− φ−2), we find

Im δA = − ḡ2

16

∫
d4x

∫
d4y 1(x)Nq(x, y)1(y). (15)

In (15), Nq(x − y) = ReG2
++(x, y) is the noise (diffusion) kernel, whereG++ is

the relevant closed-timepath correlator of theχ field at temperatureT0. Nonleading
one-loop terms are smaller by a factor ofO(N−1/2).

The first step in the evaluation of the master equation is the calculation of
the density matrix propagatorJr from Eq. (13). In order to estimate the func-
tional integration that defines the reduced propagator, we perform a saddle point
approximation

Jr[φ
+
f , φ−f , t | φ+i , φ−i , t0] ≈ expi A[φ+cl , φ

−
cl ],

whereφ±cl is the solution of the equation of motionδReA
δφ+ |φ+=φ−= 0 with boundary

conditionsφ±cl (t0) = φ±i andφ±cl (t) = φ±f . It is very difficult to solve this equation
analytically. For simplicity, we assume that the system-field contains only one
Fourier mode withEk = Ek0. We are motivated in this by the observation that the long-
wavelength modes start growing exponentially as soon as the quench is performed
and rapidly dominate the fluctuation power spectrum (Boyanovskyet al., 1994,
1995; Ramsey and Hu, 1997). Modes with|k0|2 > µ2 will oscillate.

Further, we are interested primarily in the order parameter

φ(t) = φ(k0 = 0, t) = lim
V→∞

1

V

∫
x∈V

d3x φ(x, t),
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and all our subsequent calculations will be for theis zero-frequency mode. We write
the spatially constant classical solution asφ(s) = f (s, t), where f (s, t) satisfies
the boundary conditionsf (0, t) = φi and f (t, t) = φf . Qualitatively, f (s, t) grows
exponentially withs for t ≤ tsp, and oscillates fortsp < s < t when t > tsp. We
shall therefore approximate its time dependence fort ≤ tsp as

f (s, t) = φiu1(s, t)+ φfu2(s, t), (16)

whereu1(0, t) = 1, u1(t, t) = 0 andu2(0, t) = 0, u2(t, t) = 1, with solution

u1(s, t) = sinh[µ(t − s)]

sinh(µt)
, u2(s, t) = sinh(µs)

sinh(µt)
.

We shall justify the use of the linear equation later. In fact, we shall see then that
it is not an unreasonable approximation until almosttsp.

In order to solve the master equation we must compute the final time deriva-
tive of the propagatorJr, and after that eliminate the dependence on the initial
field configurationsφ±i coming from the classical solutionsφ±cl . This is the usual
procedure; see Lombardo and Mazzitelli (1996).

As we are solely interested in the onset of classical behavior, it is sufficient to
calculate the correction to the usual unitary evolution coming from the noise kernel.
For clarity we drop the suffix f on the final state fields. If1 = (φ+2− φ−2)/2 for
thefinal field configurations, then the master equation forρr (φ+, φ−, t) is

i ρ̇r = 〈φ+|[H, ρ̂r]|φ−〉 − i
ḡ2

16
V12D(t)ρr + · · · (17)

The presence of1 in (17), rather thanφ+ − φ−, is a consequence of the quadratic
coupling to the environment inSint. Since our main concern is with the diag-
onalization ofρr, it is not necessary to consider the evolution equation for the
Wigner function, as has been shown in the literature of quantum Brownian motion
(Lombardoet al., 2000; Pazet al., 1993). The volume factorV that appears in the
master equation is due to the fact that we are considering a density matrix which is
a functional of two different field configurations,φ±(Ex) = φ±, which are spread
over all space. The-time dependent diffusion coefficientDχ (t) due to each of the
many external environmentalχ fields is given by

Dχ (t) = 3
∫ t

0
ds u(s, t) ReG2

++(0; t − s), (18)

where

u(s, t) =
[
u2(s, t)− u̇2(t, t)

u̇1(t, t)
u1(s, t)

]2

. (19)

For the case of an instantaneous quench,u(s, t) = cosh2µ(t − s) when t ≤ tsp,
and is an oscillatory function of time whent > tsp.
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Although G++ is oscillatory at all times, the exponential growth ofu(t)
enforces a similar behavior onDχ (t). In the high-temperature limit (kBT À µ),
the explicit expression for that contribution to the diffusion coefficient due to the
χa fields alone is

Dχ (t) = 5(kBT)2

64π2

∫ t

0
ds u(s, t)

∫ ∞
0

dp
p2

ω4
cos[2ωs], (20)

whereω2 = p2+m2 and we have setm2 = µ2.
For timesµt À 1, the integration in (20) is dominated by the behavior at

s= 0:

Dχ (t) ∼ (kBT0/µ)2 u(0, t) ∼ (kBT0/µ)2 exp[2µt ]. (21)

The spinodal timetsp, is again defined as the time for which〈φ2〉t ∼ η2 =
6µ2/λ. For t > tsp, the diffusion coefficient stops growing and oscillates around
D(t = tsp).

3.3. Short-Wavelength Modes

In our present model the environment fieldsχa are not the only decohering
agents. The environment is also constituted by the short-wavelength modes of the
self-interacting fieldφ. Therefore, we split the field asφ = φ< + φ> , where the
system-fieldφ< contains the modes with wavelengths longer than the critical value
µ−1, while the bath or environment-field contains wavelengths shorter thanµ−1.
This gives an additional one-loop contributionDφ(t) to the diffusion function with
the sameu(s, t) but aG++ constructed form the short-wavelength modes of the
φ field as it evolves from the top of the potential hill. Without the additional powers
of N−1 to order contributions, summation of loop diagrams is essential to get a
reliableG++. However, it is not necessary to calculateDφ(t) in order to get a good
estimate oftD. Since the contribution ofDφ(t) to the overall diffusion function
is positive we can derive anupperbound on the decoherence timetD from the
reliable diffusion functionsDχ alone.

However, we would not expect the inclusion of theφ field to give a qualitative
change. Specifically, we note that, if we takeφ field propagators dressed by only
the simplest tadpole diagrams and ignore two-loop self-interaction diagrams, then
the diffusion correction due to theφ loop is now similar to that of theχ loops. The
effect is that the short-wavelength modes in the one-loop diagrams from which
they are calculated have been kept at the initial temperatureT0, on the grounds that
passing through the transition quickly has no effect on them. The quench mimics
a slower evolution of temperature in which only the long-wavelength modes show
instabilities that the transition induces. That is, withḡ ' λ and no 1/N factor,
the short-wavelengthφ modes would have the same effect on the dissipation,
qualitatively, asall the explicit environmental fields put together. However, at an
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order of magnitude level there is no change, since the effect is to replaceḡ2 by
ḡ2+ O(λ2) = O(ḡ2).

3.4. The Decoherence Time

Using the positivity ofDφ we estimate the decoherence timetD for the model
by considering the approximate solution to the master equation (17),

ρr[φ
+
< , φ−< ; t ]∼< ρu

r [φ+< , φ−< ; t ] exp

[
− V0

∫ t

0
ds Dχ (s)

]
,

whereρu
r is the solution of the unitary part of the master equation (i.e. without

environment). It is obvious from this (and also from (17)) that the diagonal density
matrix just evolves like the unitary matrix (the environment has almost no effect on
the diagonal part ofρr). In terms of the dimensionless fields̄φ = (φ+< + φ−< )/2µ,
andδ = (φ+< − φ−< )/2µ, we have0 = (1/16)ḡ2µ4φ̄

2
δ2.

The system behaves classically whenρr is appropriately diagonal. We there-
fore look at the ratio∣∣∣∣ρr[φ̄ + δ, φ̄ − δ; t ]

ρr[φ̄, φ̄; t ]

∣∣∣∣ ∼< ∣∣∣∣ρu
r [φ̄ + δ, φ̄ − δ; t ]

ρu
r [φ̄, φ̄; t ]

∣∣∣∣ exp

[
− V0

∫ t

0
ds Dχ (s)

]
. (22)

It is not possible to obtain an analytic expression for the ratio of unitary
density matrices that appears in Eq. (22). The simplest approximation is to neglect
the self-coupling of the system field (Guth and Pi, 1991). In this case the unitary
density matrix remains Gaussian at all times as∣∣∣∣ρu

r [φ̄ + δ, φ̄ − δ; t ]

ρu
r [φ̄, φ̄; t ]

∣∣∣∣ = exp[−Tc

µ
δ2 p−1(t)], (23)

wherep−1(t), essentiallyµ2〈φ2〉−1
t , decreases exponentially with time to a value

O(λ). This approximation can be improved by means of a Hartree-like approxima-
tion (Boyanovskyet al., 1994, 1995; Ramsey and Hu, 1997). In this case the ratio
is still given by Eq. (23), but nowp−1(t) decreases more slowly ast approaches
tsp. In any case, in the unitary part of the reduced density matrix the nondiagonal
terms are not suppressed. Therefore, in order to obtain classical behavior, the rel-
evant part of the reduced density matrix is the term proportional to the diffusion
coefficient in Eq. (22), since it is this that enforces its diagonalization.

The decoherence timetD sets the scale after which we have a classical system-
field configuration. According to our previous discussion, it can be defined as the
solution to

1∼> V0
∫ tD

0
ds D(s). (24)
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It corresponds to the time after which we are able to distinguish between two
different field amplitudes (inside a given volumeV).

Suppose we reduce the couplingsḡ,λ of the systemφ field to its environment.
Since, as a one-loop construct,0 ∝ ḡ2, λ2 our first guess would be that as̄g, λ
decrease,tD increases and the system takes longer to become classical. This is not
really the case. The reason is twofold. First, there is the effect that0 ∝ T2

0 , and
T2

0 ∝ λ−1 is nonperturbatively large for a phase transition. Second, because of the
nonlinear coupling to the environment, obligatory for quantum field theory,0 ∝
φ̄

2. The completion of the transition finds̄φ2 ' η2 ∝ λ−1 also nonperturbatively
large. This suggests that0, and hencetD, can be independent ofλ. The situation
would be different for a linear coupling to the environment, for whichφ̄2 would
not be present, or a cold initial state in whichφ is peaked aboutφ = 0. In fact, the
situation is a little more complicated, but the corollary thattD does not exceedtsp

as the couplings become weaker remains true.
In order to quantify the decoherence time we have to fix the values ofV , δ, and

φ̄. V is understood as the minimal volume inside which we do not accept coherent
superpositions of macroscopically distinguishable states for the field. Thus, our
choice is that this volume factor isO(µ−3) sinceµ−1 (the Compton wavelength)
is the smallest scale at which we need to look. Inside this volume, we do not
discriminate between field amplitudes which differ byO(µ), and therefore we
takeδ ∼ O(1). Forφ̄ we setφ̄2 ∼ O(α/λ), whereλ ≤ α ≤ 1 is to be determined
self-consistently.

Note that the diagonalisation ofρt occurs in time as anexponentialof an
exponential. As a result, decoherence occurs extremely quickly, but not so quickly
thatµt ¿ 1. Consequently, in order to evaluate the decoherence time in our model,
we have to use Eq. (21). On taking the equality in (24) we find

exp[2µtD] ≈ λ
√

Nḡ

ḡ2α
= O

(√
N

α

)
, (25)

whereby

µtD ' 1

4
ln N − 1

2
lnα ' ln

(
η

Tc
√
α

)
.

This is anupperbound ontD, but probably still qualitatively correct. The value of
α is determined asα ' √µ/Tc from the condition that, at timetD, 〈|φ|2〉t ∼ αη2.
Sinceα ¿ 1, in principle, the field has not diffused far from the top of the hill
before it is behaving classically.

For comparison, we findtsp, for which〈φ2〉t ∼ η2, given by

exp[2µtsp] ≈ O
(
η2

µTc

)
. (26)
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The exponential factor, as always, arises from the growth of the unstable long-
wavelength modes. The factorT−1

c comes from the coth(βω/2) factor that encodes
the initial Boltzmann distribution at temperatureT∼> Tc. As a result,

µtsp∼ ln

(
η√
µTc

)
, (27)

whereby 1< µtD ≤ µtsp, with

µtsp− µtD ' 1

4
ln

(
Tc

µ

)
> 1, (28)

for weak enough coupling, or high enough initial temperatures (we have taken
T0 ∼ Tc throughout). This is our main result, that for the physically relevant modes
(with smallk0) classical behavior has been established before the spinodal time,
when the ground states have became populated.

3.5. Back-Reaction

We can now justify our earlier assumption that for an instantaneous quench,
nonlinear behavior only becomes important just before the spinodal time (Karra
and Rivers, 1997). To see this, we adopt the Hartree approximation, in which the
equations of motion are linearized so that the field modesf ±k now satisfy the
equation [

d2

dt2
+ k2− µ2(t)

]
f ±k (t) = 0,

where (Boyanovskyet al., 1994, 1995; Ramsey and Hu, 1997)

−µ2(t) = m2(t)+ 4λ
∫

d3 p

(2π )3
C(p)[ f +p (t) f −p (t)− 1] (29)

andC(p) = (cothβω/2)/2ω, ω2 = p2+m2.
A similar result would be obtained by extending our initialO(2) theory to an

O(M) theory in the large-M limit before takingM = 2.
Our coarse-graining retains only the unstable modes in the integral, which

suggests (Karra and Rivers, 1997) the approximate hybrid self-consistent equation
for µ2(t),

µ2(t) ' µ2− Cλ
Tµ

(µtsp)3/2
exp

(
2
∫ t

0
dt′ µ(t ′)

)
(30)

(C = O(1)), which has the exponential growth of the WKB solution, but non-
singular behavior whenµ(t) ≈ 0. The exact solution to Eq. (30) fort < tsp is
µ(t) = µ tanhµ(tsp− t), irrespective of the values of the temperatureT and the
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coupling strength. In fact, we anticipated this in (27), when we estimatedtsp on
the assumption that the back-reaction would only take effect in the final moments.

That is, the theory only ceases to behave like a free Gaussian theory with
upside-down potential at a timetB,

tsp− tB = O(µ−1). (31)

It follows that tB ≥ tD in our ordering of scalesTcÀ µ, but in practiceTc needs
to be at least an order of magnitude larger thanµ for this to be the case.

When (28) is valid, we see thatρr becomes diagonal before nonlinear terms
could be relevant. In this sense, classical behavior has been achieved before quan-
tum effects could destroy the positivity of the Wigner functionWr.

4. FINAL REMARKS

We have shown that in our model,ρr becomes diagonal before the spinodal
time at which the order parameter field has first populated the ground-state values
of the theory. Further, it can also be diagonal before nonlinear terms are relevant.
That is, decoherence can be achieved before quantum effects destroy the positivity
of the Wigner functionWr. Really, ourtD sets the time after which we have a
classical probability distribution (positive definite) even for timest > tsp. The
existence of the environment is crucial in doing this. Of course, for non-Gaussian
or delocalized (in the field space) initial states, it is clear thatWr will be nonpositive
definite even in the linear regime, and thereforetD should be smaller than the one
we evaluated here. In the present work,tD is theclassicalization time-bound.

This result goes in the direction of justifying the use of classical numerical
simulations for the analysis of the dynamics of the long-wavelengths modes after
the quench.
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