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Classical Behavior After a Phase Transition:
|. Classical Order Parameters
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We analyze the onset of classical field configurations after a phase transition. Firstly, we
motivate the problem by means of a toy model in guantum mechanics. Subsequently, we
consider a scalar field theory in which the system-field interacts with its environment,
represented both by further scalar fields and by its own short-wavelength modes. We
show that for very rapid quenches, the order parameter can be treated classically by the
time taken for it to achieve its ground state values (spinodal time).
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1. INTRODUCTION

The emergence of classical behavior from a quantum system is a problem of
interest in many branches of physics (Giulgtial,, 1996; Molmer, 1997a,b Paz
and Zurek, 2000), from the foundations of quantum mechanics, condensed matter,
and quantum optics, to quantum computing and quantum field theory. In the last
few years, experimental evidence supports our theoretical understanding of the
quantum to classical transition and also opens new avenues in the development
of essential tools to understand the more hidden mysteries of the quantum world
(Bruneet al,, 1996; Friedmaset al., 2000; Monroeet al,, 1996; Myattet al., 2000;
Rauschenbeutel al., 2000; Tesche, 2000; van del Wtlal, 2000).

The quantum to classical transition, for a point particle, say, involves two
different but very related conditions. The first one is that there shouldobe
relations i.e., the coordinates and momenta of a particle should be correlated
in phase space, according to the classical equations of motion. For example, the
Wigner function should have a peak at the classical trajectories. The second and
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equally important condition is the elimination of quantum interference between
these classical trajectories, i.dgcoherenceOnce decoherence eliminates inter-
ference terms (absent in the “classical world”), the Wigner function becomes a
good candidate for a classical probability distribution. The generalization from
particles to fields is straightforward, in principle, with the same attributes of cor-
relations and decoherence.

The onset of classical behavior is a natural consequence of a quantum open
system, triggered by the interaction between the system of interest and its envi-
ronment. The coupling strength between system and bath sets the timescale after
which we can consider our system as classical, according to both of the conditions
we mentioned before. This temporal scale is usually calledidveherence time
tp. After this decoherence time we do not have macroscopic states in coherent su-
perpositions anymore, and a probability distribution can be extracted that evolves
by means of a generalized Fokker—Planck equation.

Our concern in this paper will be the quantum to classical transition of a
single scalar order parameter field during continuous transitions, with the simplest
double-well potential. This is an idealization of the phase transitions that are ex-
pected to occur at the GUT and EW scales in the standard big-bang cosmological
model (Kolb and Turner, 1990).

An analysis of phase transitions in quantum field theory that takes the nonequi-
librium nature of the dynamics into account from first principles has only recently
begun to be addressed. In particular, the naive picture of a classical order parameter
(inflaton or Higgs) fieldp rolling down an adiabatic effective potential, that was
once a mainstay of cosmological field theory modeling, has been shown to be sus-
pect (Cormier and Holman, 2000). Alternatively, the suggestion by Kibble (1980)
that while a nonadiabatic approach is essential, causality alone can set saturated
bounds on time and distance scales during a transition, has been shown to be only
partly true. The onset of classical behavior is absolutely crucial in the work of
Kibble (1980) in that the experimental signal for the causal bound is the produc-
tion of classical defects at a prescribed density. Topological defects are inevitable
in most transitions, and they may have played a fundamental role in the formation
of large scale structure (strings) (Zurek, 1985, 1996). Moreover, superabundance
of some topological defects may contradict the observational evidence (magnetic
monopoles).

In all the above-mentioned examples there is an order parameter that evolves
from the false to the true vacuum of the theory: the Higgs fields in GUT and EW
phase transitions, the inflaton field(s) in inflationary models, etc. Although these
are quantum scalar fields with vanishing mean value (due to the symmetry of the
initial quantum state), the order parameter is usually treated as a classical object.
Our aim in this paper is to justify this assumption.

Our approach follows the analysis started by two of us in Lombardo and
Mazzitelli (1996), where we studied the emergence of classical inhomogeneities
from quantum fluctuations for a self-interacting quantum scalar field. We have
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investigated there the decoherence induced on the long-wavelength field modes
by coarse-graining the field modes with wavelength shorter than a critical value,
in order to show how the system becomes classical because of the interaction
with its environment (in that case composed of the short-wavelength field modes
of the same field). For phase transitions the classicality of the order parameter
can be analyzed along the same lines by extending the model to accommodate
spontaneous symmetry breaking.

This is a difficult problem because, as has been pointed out in the literature,
and as we will stress in what follows, nonperturbative and non-Gaussian effects
are relevant in the analysis of phase transitions. As a trial run for this analysis
we begin by presenting a toy model in which we will study the spread of a wave
packet initially centered around the local maximum of a double-well potential,
paying particular attention to the influence of the environment on the Wigner
function and on the reduced density matrix. Only later we will extend our results
to quantum field theory phase transitions.

The paper is organized as follows. In the next section we study the evolu-
tion of a wave packet initially centered on the top of a double-well potential. We
describe the exact numerical evaluation of the evolution of the wave packet. We
show that as the coupling between the system and the environment decreases, the
decoherence time increases. Because of the nonlinearities of the potential, when
the coupling vanishes there is no classical limit, not even classical correlations.
In Section 3 we analyze the full problem in quantum field theory. Here, the situa-
tion is somewhat different. Although, again, the decoherence time increases as the
coupling to the environment decreases, so does the spinodal time, the time for the
order parameter to achieve its classical ground-state values. Thus, however weak
the coupling, decoherence can still ocbeforethe field has fallen to its classical
level.

Itis important to say that the issue of how the system evolves into the classical
theory has been addressed in Hadtibl.(1996) and Coopeat al.(1997). For some
models, it has been shown that classicality emerges as a consequence of profuse
particle creation. A nonperturbative large occupation number of long-wavelength
modes produces, on average, a diagonal density matrix. This dephasing effect
occurs at late times. Here we will consider a different model in which classicality
is an early time event.

Finally, in Section 4, we present our final remarks and conclusions.

2. TOY MODEL: DOUBLE-WELL POTENTIAL AND ENVIRONMENT

The simplest field theory that permits a phase transition is that of a single real
scalar fieldp, with action

1 1 A
] = f d*x {Eama% + Euquz — aqb“} 1)
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with (u? > 0) Z, symmetry breaking. At high temperature the symmetry is re-
stored. As we shall see later, a phase transition induced by a sudden temperature
guench can be described by an effective field theory in which there is a change of
sign in the mass term of the scalar field

1 1 1
S"ig] = [ a'x| 50,090 - 00 - o], @

wherem?(t) = M2 > Ofort < 0andm?(t) = —u? fort sufficiently positive. This
change of sign im?(t) breaks the globak, symmetry for positivet.

Understanding this transition, for even such a simple system, is difficult.
As a preliminary exercise, we start by considering a toy model composed of a
particle and a quantum anharmonic oscillator (the “system”), linearly coupled
to an environment composed of an infinite set of harmonic oscillators. The total
classical action is given by

X, gn] = Ssyst{x] + SrdAn] + SnelX, Onl
_ /Ot ds[%M (x2 —Q2(t)x% - %x“)
-3 g oid) | - T ®

wherex andq, are the coordinates of the particle and the oscillators, respec-
tively. The quantum anharmonic oscillator is coupled linearly to each oscillator in
the bath with strengtiT,,. In analogy withm?(t) of (1) we consider the simplest
possible case of aimstantaneousjuench, in whicmg(t) = QS whent < 0 and
Q3(t) = —Q3 whent > 0. The unstable particle, coordinatghas an initial ther-

mal distribution at temperatufie, for which(X) = 0. Fort > 0, itfindsitself on the
unstable hump of the potential and falls toward its stable mining@at= 2Q3 /.

2.1. The Environment

In the absence of an environment, and considexirg0, this situation has
been discussed in detail by Guth and Pi (1991) and Kim and Lee (2000). In the
presence of an environment the relevant objects for analyzing the quantum to
classical transition in this model are the reduced density matrix and the associated
Wigner function;

pr(x, X', 1) = / dan p(X, G X' G 1), (@)
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and

1 +o0 )
Wi, p,t)=g/ ay & i (x+ 2. x- L 1). 5)

The reduced density matrix satisfies a closed master equation. This has been eval-
uated by Huet al. (1993a,b) for the quantum Brownian motion problem with

Q2 positive. Following the same procedure, we can write a corresponding master
equation for the unstable particle (Zurek and Paz, 1994) by replazjray i Q¢

in the Hu—Paz—Zhang result

i3 or(X, X', 1) = (X|[H, pr][X')
=y @)X = X)(3x — 3x)pr(X, X', 1)
+ F(OX = X)(x + dx)or(X, X', 1)
—iD(t)(x — X)?pr(x, X, 1). (6)

In(6), H = Heyst— SMGA(t), whereQ?(t), renormalizes the natural frequency of

the particle,y (t) is the dissipation coefficient, arid(t) and f (t) are the diffusion
coefficients, which produce the decoherence effects. They depend on the properties
of the environment as

Q2(t) = _2 f t dt’ coshot')n(t")

y(t) = _M/ dt’ sinh@ot')5(t)

D(t) = /0 dt’ cosh@ot')v(t)) @)

t
0= e | atsinn@atynct)

wheren(t) andv(t) are the dissipation and noise kernels, respectively,
n(t) = / dowl (w) sinwt
0
oo ﬂw
v(t) :/ dol (w) COthTCOSa)t,
0

andl (w) = O(C?) is the spectral density of the environment.

The first term on the RHS of Eq. (6) gives the usual Liouville-like evolution;
the term proportional tgr produces dissipation/(is the relaxation coefficient).
The term proportional to the diffusion coefficiebt(t), which is proportional to
(x — x’)? and positive definite, gives the main contribution to the decoherence



2126 Lombardo, Rivers, and Mazzitelli

since it produces a diagonalization of the reduced density matrix. Let us write the
reduced density matrix as

orlx, X':t] = G[x, X/, t] exp [—(x —x')? /t D(s) ds}. (8)
0

Inserting this expression into the master equation it is easy to to see that the dif-
ferential equation foG[x, x’, t] contains the usual Liouville-term plus additional
contributions proportional t®, y, andf . However, none of these additional terms

is imaginary with the right sign for diffusion. An approximate solution of Eq. (6)

is therefore (Zurek, 1994)

orlX, X t] &~ pf[x, X', t] exp [—(x —x')? /t D(s) ds:|, 9)
0

wherep/' takes into account the unitary evolution.
Alternatively, one can derive the following evolution equation for the reduced
Wigner function of the system (P&t al., 1993):

. A
(X, P, t) = {Hsyst Wrlps — 2 X0550Wr + 27 (1)9p(PV)

+D(1)35,Wr — f(1)3]5,Wh. (10)

Let us concentrate on the evolution equation (10). The first term on the right-hand
side of Eq.(10) is the Poisson bracket, corresponding to the usual classical evolu-
tion. The second term includes the quantum correction (we have=set). The
last three terms describe dissipation and diffusion effects due to coupling to the
environment. In order to simplify the problem, we consider a high-temperature
ohmic (I (w) ~ w) environment. In this approximation the coefficients in Eq. (10)
become constantgi(t) = yo, f ~ 1/T, andD = 2)pksg T. The normal diffusion
coefficientD is the term responsible for decoherence effects and at high temper-
atures is much larger thap and f. Therefore, in Eq. (10), we may neglect the
dissipation and the anomalous diffusion terms in comparison to the normal diffu-
sion. As we saw in (9), itis the diffusion exponential in this equation that enforces
the approximate diagonalization pfifi this coordinate basis.

Itisimportant to note that this high-temperature approximation is well defined
after atimescale ofthe order of (kg T) ~ yo/D (with h = 1). Therelevantregime
of evolution for our systems takes place at times comfortably larger than this
timescale.

2.2. Numerical Analysis

We have solved Eq. (10) numerically, in the high-temperature limit, for dif-
ferent values of the diffusion coefficieft, in order to illustrate its relevance in
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the quantum to classical transition. Details are given elsewhere (Lombaadlp
2000). We have chosen as initial condition a Gaussian state cent&ged iy = 0
with minimal uncertainty¢? = 0.5 andrrg = 0.5). The Wigner functionisinitially
positive definite, and different from zero only near the top of the potential. We have
set the coupling constaht= 0.01, the renormalized frequenci®s= w, = 1 (we
are measuring time in units 6f) and the bare masses also equal to one.

Itis illustrative to examine first the exact result when the environment is ab-
sent (for this case we have solved numerically the &tinger equation). Initially
the Gaussian Wigner function begins to squeeze irkthep direction, and be-
fore the spinodal timetd, ~ 2.3) it becomes a nonpositive function (Fig. 1). Our
definition of the spinodal time is that time at whigk?); = 2Q3/2, its symmetry-
breaking value. During the evolution, the Wigner function covers all the phase
space (Fig. 2) and it is clear that it is not possible to consider it as a classical
probability distribution. Although we started with a special initial state (Gaussian
with minimum uncertainty), the nonlinearities of the potential make the Wigner
function a nonpositive distribution.

AN
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Fig. 1. The Wigner function fot = 2 < tsp = 2.3, when no environment is considered.
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Fig. 2. The Wigner function fot = 4. As the function is not positive definite, there
is no classical correlation.

Let us now consider a coupling with an environment such that the normal
diffusion coefficientidd = 0.01. As expected, the evolution of the Wigner function
is similar to the previous one at early times (Figs. 3 and 4). However, as can be seen
from Figs. 5 and 6, at long times it becomes positive definite and peaked around
the classical phase space.

The effect of the environment is more dramatic for larger values of the dif-
fusion coefficient. In our last examplB, = 1, the quantum to classical transition
takes place almost instantaneously, even before the quantum particle pass through
the spinodal point (Figs. 7 and 8).

It is interesting to note that as the diffusion coefficient grows, the amplitude
of the Wigner function decreases. This is due to the fact that the decoherence
increases wittD. The reduced density matrix diagonalizes. As a consequence, its
‘Fourier transform,’ the reduced Wigner function, spreads out.

Our numerical results show explicitly that the existence of the environment
is crucial in the quantum to classical transition. The decoherence time depends on
the temperature and the coupling between system and environment through the
diffusion coefficientD (Zurek, 1986).

3. PHASE TRANSITIONS IN FIELD THEORY

We can now tackle the full quantugrfield theory of (1). A simplified analysis
of the model has been given elsewhere (Lombadal., 2001). As before, the
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Fig. 3. The Wigner function fot = 2, including an environment with diffusion coefficient
D =0.01.

onset of classical behavior is due to the environment. For the infinite degree of
freedom quantum field, the field ordering after the transition begins is due to the
growth in amplitude of its unstable long-wavelength modes. For these modes the
environment consists of the short-wavelength modes of the field, together with
all the other fieldsy,. with which the¢ inescapably interacts (Lombardo and
Mazzitelli, 1996). The inclusion of explicit environment fielgs both reflects on

the fact that a scalar field in isolation is physically unrealistic, as well as provides
us with a systematic approximation scheme.

Although the system field can never avoid the decohering environment of
its short-wavelength modes, to demonstrate the effect of an environment we first
consider the case in which it is taken to be composed only of the figldShe
short-wavelength modes of tigefield will be considered afterwards. Specifically,
we take the simplest scalar classical action

S, x]1 = &ysl[qb] + Sndx] + Snil®, x1, (11)

1 1 A
Soulo] = [ @i | 50,070 + 07— 10t
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Fig. 4. The same Wigner function (as in Fig. 3) for tihe= 4. It is not positive definite.

1
Sl xal = Z/d4 { 9, Xa0" xa — zmgXaz},

N
sulg, 1 == 2 % [ a0, (12)

whereu?, m? > 0.

We see that the quantum mechanics action of (3) is, in large part, a simplified
version of (11). To make any progress it is important that the environment be as
simple as possible. To that end we have included no explicit self-interaction of the
xa fields, which interact through thgfield as intermediary. However, there is one
significant difference in that the interactions of #hdield with the environment
in (12) arequadratig and not linear as in (3). The more conventional choice of a
linear coupling to the environment was made in the previous section (and Lombardo
et al, 2000) to give a model directly comparable to similar particle models with
no symmetry breaking, for which much work has been done. Although it has been
adopted for quantum field theories (Kim and Lee, 2000) a linear—linear coupling
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Fig. 5. The same Wigner function (as in Fig. 3) foe 10.

is inappropriate and we have taken the simplest quadratic—quadratic couplings in
Snt for convenience. The extension to Yukawa couplings is straightforward, and
will be given elsewhere. We are reminded that for nonlinear coupling/igg

in the quantum mechanical problem, one expects the master equation to contain
terms of the form D ™™ (t)(x" — x)2p,. We shall find a similar effect here. The
nonlinear coupling to the environment is crucial to our conclusions.

Further, in our present model, the environment has a strong impact upon the
system-field, but not vice versa, whenever possible. The simplest way to implement
this is to take a large numb@t > 1 of x, fields with comparable masses, >~
weakly coupled to the, with A; g; < 1. Thus, at any step, there axkeweakly
coupled environmental fields influencing the system field, but only one system
field to back-react upon the explicit environment.

3.1. Initial Conditions

Before we examine the model in detail, there are some general observations to
be made aboutinitial conditions and the way in which the transition is implemented.
Like any simple scalar theory the model displays a continuous transition at a
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Fig. 6. The same Wigner function, (as in Fig. 3) foe= 15. Only fort > tsp do we have
classical correlations and a positive Wigner function.

temperaturdy,

2
2 H 2

Té=—=—>u"
¢ A+ 0a

The environmental fieldg, reduceT., and in order thaTC2 > u?2, we must
take

A+ Gl

For order of magnitude estimations it is sufficient to take identigak g/+/N,
whereby

13 1/V/N>g~a,

i.e. they, “tadpole” diagrams completely overwhelm thself-interaction tadpole
diagram in generating thg thermal mass.

With n = /6u2/1 determining the position of the minima of the potential
and the final value of the order parameter, this choice of coupling and environments



Classical Behavior After a Phase Transition: | 2133

Fig. 7. The early time{ = 1) Wigner function for a diffusion coefficierd = 1.

gives the hierarchy of scales

2
2 2 n 2
ne LT =O<—) <Ln5,
¢ VN
importantin establishing areliable approximation scheme. Further, with this choice
the dominant hard loop contribution of tiefield to the x, thermal masses is

smi = O(gTZ/V'N) = O(1*/N) < .

Similarly, the two-loop (setting sun) diagram, which is the first to contribute to the
discontinuity of they-field propagator, is of magnitude

9°T2/N = O(gu?/N*?) « sm2,

in turn. That is, the effect of the thermal bath on the propagation of the environ-
mentaly fields is ignorable.

This was our intention in model-making: to construct an environment that
reacted on the system field, but was not reacted upon by it to any significant
extent. We stress that this is not a Hartree or large-N approximation of the type
that, to date, has been the standard way to proceed (Boyanenvaky1994, 1995;
Cooperet al, 1997; Ramsey and Hu, 1997) fockbsedsystem.
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Fig. 8. The same as Fig. 7 far= 2. Classicality emerges before the spinodal time.

We shall assume that the initial states of the system and environment are
both thermal, at a temperatufg > T.. We then imagine a change in the global
environment (e.g. expansion in the early universe) that can be characterized by a
change in temperature frofg to T; < T¢. Thatis, we do not attribute the transition
to the effects of the environment-fields. On incorporating the hard thermal loop
tadpole diagrams of thg (and¢) fields in thep mass term leads to the effective
action for¢ quasiparticles,

1 1 A
Syl e / d*x {58;@8% — 5my(To)g” — m"’4} :

wherem3(To) = —u(1— T¢/TZ) = M? > 0. As a result, we can take an ini-

tial factorized density matrix at temperatuigof the formg[ To] = py[Tol o[ Tol,
wheregys[To] is determined by the quadratic partﬁ’sl[qs] andp, [To] by Send xal-

Yet again, the many, fields have a large effect op, but the¢ field has neg-

ligible effect on they,. Provided the change in temperature is not too slow,
the exponential instabilities of theé field grow so fast that the field has pop-
ulated the degenerate vacua well before the temperature has dropped to zero.
Since the temperatur@, has no particular significance for the environment
field, for these early times we can keep the temperature of the environment
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fixed at T, = To = O(T¢) (our calculations are only at the level of orders of
magnitude).

Since it is the system-fielg whose behavior changes dramatically on taking
T, throughT, in this paper we adopt d@nstantaneousjuench forT, from T to
T; = 0 attimet =0, in Whichmé(T) changes sign and magnitude instantly, con-
cluding with the valuen?(t) = —u?,t > 0 that we cited in (1). Aiinstantaneous
guench is sufficient to demonstrate the rapidity with which the environment forces
the system field to become classical. Meanwhile, for simplicity¢heasses are
fixed at the common valua ~ .

3.2. Tracing out thex Fields

Attimet > 0, the reduced density matrix[¢™, ¢~,t] = (¢ |por (t)|¢p7) is
now

pr[¢+! ¢7,t] = /DXaP[¢+- Xas ¢7! Xas t]:

where p[¢™, xF, ¢, x7,t] = (@TxF1p(M)I¢~ x5 ) is the full density matrix.
Since we would like to be able to distinguish between different classical system-
field configurations evolving after the transition, we will only be interested in
the field-configuration basis for this reduced density matrix (in analogy with the
guantum Brownian motion model of the previous section). The environment will
have had the effect of making the system essentially classical®(iyés, effec-
tively, diagonal. [Our earlier comments on dephasing remain valid, and we stress
again that our understanding of what constitutes classical behavior is essentially
different from the dephasing effects found in Habttal. (1996) and Coopesat al.
(1997).] Quantum interference can then be ignored and the system is said to have
decohered. Atthe same time, we obtain a classical probability distribution from the
diagonal part of(t), or equivalently, by means of the reduced Wigner function.
For weak coupling there will be no recoherence’ at later times in which the sense
of classical probability will be lost.

Its temporal evolution is given by

ol o 1] = /d¢i+/d¢i_‘]r[¢f+'¢f_vt (A e o o
whereJ; is the reduced evolution operator
¢ ¢ gt e
Mot ¢ t1o7 ¢l = | Dt | Dy~ I NE[pF 67

ot ¢
(13)
The Feynman-Vernon influence functior@[¢™, ¢~] (Feynman and Vernon,
1963) is defined as
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Flp".¢71= /dngdx; pX[XJ,x;,to]/dxaf

Xaf Xaf
< [ oxd [ Dxg el (Sl ]+ Sule 1)
Xai Xai

X eXp(—i {Sendxa ]+ Snlo™, Xa_]})

Beginning from this initial distribution, peaked arougd= 0, we follow
the evolution of the system under the influence of the environment fields, with
Hamiltonian determined from (11). From the influence functional we define the
influence actiod Al¢™, ¢~ ] as

Flp™, ¢71 = expisAlp*, ¢7]. (14)
The total coarse-grained effective action is
Alp*, 971 =S¢"] - S¢1+5Alp", ¢7].
We will calculate the influence action to one loop (two vertices) for |adgesing
closed-time path correlators. It is the imaginary part that contains the information
about the onset of classical behaviorAlf= 1(¢*2 — ¢~2), we find
_ 52 4 4
IM§A = T d* [ d*y A(X)Ng(x, Y)A(Y). (15)

In (15), Ng(x — y) = ReG2_ (x, y) is the noise (diffusion) kernel, whe(@ , is
the relevant closed-timepath correlator of ghiéeld at temperatur&,. Nonleading
one-loop terms are smaller by a factor@fN —/2).

The first step in the evaluation of the master equation is the calculation of
the density matrix propagatal from Eq. (13). In order to estimate the func-
tional integration that defines the reduced propagator, we perform a saddle point
approximation

It ot ¢, to] ~ expi Algg, dgl,

whereg3 is the solution of the equation of motiéﬁ%’* |¢+=¢-= 0 with boundary
conditionsgZ (to) = ¢:* andpZ(t) = ¢i*. Itis very difficult to solve this equation
analytically. For simplicity, we assume that the system-field contains only one
Fourier mode wittk = Ko. We are motivated in this by the observation thatthe long-
wavelength modes start growing exponentially as soon as the quench is performed
and rapidly dominate the fluctuation power spectrum (Boyanoesial, 1994,
1995; Ramsey and Hu, 1997). Modes wikh|® > 12 will oscillate.

Further, we are interested primarily in the order parameter

. 1
#(0) = plko = 0,0) = lim = f  dxa(0),
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and all our subsequent calculations will be for theis zero-frequency mode. We write
the spatially constant classical solutionggs) = f (s, t), where f (s, t) satisfies

the boundary condition§(0,t) = ¢; and f (t, t) = ¢;. Qualitatively, f (s, t) grows
exponentially withs for t < ts,, and oscillates fots, < s < t whent > tg, We

shall therefore approximate its time dependencé forts, as

f(S, t) = ¢iu1(s, t) + ¢fu2(si t)v (16)
whereu(0,t) = 1, uy(t, t) = 0 andu,(0,t) = 0, ux(t, t) = 1, with solution
_ sinhfu(t — s)] _ sinh(us)
WED= "G "D S

We shall justify the use of the linear equation later. In fact, we shall see then that
it is not an unreasonable approximation until alngst

In order to solve the master equation we must compute the final time deriva-
tive of the propagatod;, and after that eliminate the dependence on the initial
field configurationg™ coming from the classical solutiogs:. This is the usual
procedure; see Lombardo and Mazzitelli (1996).

As we are solely interested in the onset of classical behavior, it is sufficient to
calculate the correction to the usual unitary evolution coming from the noise kernel.
For clarity we drop the suffix f on the final state fieldsAlf= (¢+2 — ¢—2)/2 for
thefinal field configurations, then the master equationddip™, ¢, t) is

—

e = (@7 IH, Al97) =1 2V ATD O+ (a7

The presence ok in (17), rather tha, — ¢_, is a consequence of the quadratic
coupling to the environment igy;. Since our main concern is with the diag-
onalization ofpy, it is not necessary to consider the evolution equation for the
Wigner function, as has been shown in the literature of quantum Brownian motion
(Lombardoet al,, 2000; Pazt al., 1993). The volume factdv that appears in the
master equation is due to the fact that we are considering a density matrix which is
a functional of two different field configurationg;*(X) = ¢*, which are spread
over all space. The-time dependent diffusion coeffici2p(t) due to each of the
many external environmentglfields is given by

D,(t) = 3/t ds us, t)ReG2_ (0;t — s), (18)
0
where
Ua(t, t) 2
u(s, ) = [uz(s, ) - B t)} . (19)

For the case of an instantaneous quentgh, t) = coslf u(t — s) whent < tsps
and is an oscillatory function of time wher> tsp.
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Although G, is oscillatory at all times, the exponential growth w(t)
enforces a similar behavior di, (t). In the high-temperature limikgT >> u),
the explicit expression for that contribution to the diffusion coefficient due to the
Xa fields alone is

5(sT)>
6472
wherew? = p? + m? and we have seh? = ;2.

For timesut > 1, the integration in (20) is dominated by the behavior at
s=0:

t 00 2
D, (t) = /0 ds us, t) /0 dp%cos[zus], (20)

D, (t) ~ (ks To/w)? u(0, t) ~ (ks To/p)? exp[2ut]. (21)

The spinodal timés, is again defined as the time for whi¢h?); ~ n? =
6u?/A. Fort > tsp, the diffusion coefficient stops growing and oscillates around
D(t = tsp).

3.3. Short-Wavelength Modes

In our present model the environment fielgsare not the only decohering
agents. The environment is also constituted by the short-wavelength modes of the
self-interacting fieldp. Therefore, we split the field as = ¢< + ¢-, where the
system-fields< contains the modes with wavelengths longer than the critical value
w1, while the bath or environment-field contains wavelengths shorter;than
This gives an additional one-loop contributiby (t) to the diffusion function with
the samau(s, t) but aG, , constructed form the short-wavelength modes of the
¢ field as it evolves from the top of the potential hill. Without the additional powers
of N~ to order contributions, summation of loop diagrams is essential to get a
reliableG,.. However, it is not necessary to calcul&ig(t) in order to get a good
estimate oftp. Since the contribution oDy(t) to the overall diffusion function
is positive we can derive ampperbound on the decoherence tirtie from the
reliable diffusion functiond, alone.

However, we would not expect the inclusion of théeld to give a qualitative
change. Specifically, we note that, if we takdield propagators dressed by only
the simplest tadpole diagrams and ignore two-loop self-interaction diagrams, then
the diffusion correction due to thgeloop is now similar to that of the loops. The
effect is that the short-wavelength modes in the one-loop diagrams from which
they are calculated have been kept at the initial temperag,gn the grounds that
passing through the transition quickly has no effect on them. The quench mimics
a slower evolution of temperature in which only the long-wavelength modes show
instabilities that the transition induces. That is, wifz A and no ¥ N factor,
the short-wavelengtlp modes would have the same effect on the dissipation,
qualitatively, asall the explicit environmental fields put together. However, at an
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order of magnitude level there is no change, since the effect is to regtdog
g%+ 0(:) = O(@).

3.4. The Decoherence Time

Using the positivity oD, we estimate the decoherence titpdor the model
by considering the approximate solution to the master equation (17),

t
orlod, o2 1< pr[9d, 9231 exp[— VF/0 ds DX(S)},

wherep/ is the solution of the unitary part of the master equation (i.e. without
environment). It is obvious from this (and also from (17)) that the diagonal density
matrix just evolves like the unitary matrix (the environment has almost no effect on
the diagonal part of;). In terms of the dimensionless fields= (¢F + ¢-)/2u,
ands = (¢ — ¢=)/2u, we havel’ = (1/16)g2u ¢8>,

The system behaves classically whegiis appropriately diagonal. We there-
fore look at the ratio

orlp +8,0 — 8:t1| _ | plld + 8, ¢ — 81

It is not possible to obtain an analytic expression for the ratio of unitary
density matrices that appears in Eq. (22). The simplest approximation is to neglect
the self-coupling of the system field (Guth and Pi, 1991). In this case the unitary
density matrix remains Gaussian at all times as

Pl + 8, ¢ — 8;1]
orle, ¢;t]

wherep1(t), essentially.?(¢?); 1, decreases exponentially with time to a value
O(A). This approximation can be improved by means of a Hartree-like approxima-
tion (Boyanovskyet al., 1994, 1995; Ramsey and Hu, 1997). In this case the ratio
is still given by Eq. (23), but now(t) decreases more slowly aspproaches
tsp. In @any case, in the unitary part of the reduced density matrix the nondiagonal
terms are not suppressed. Therefore, in order to obtain classical behavior, the rel-
evant part of the reduced density matrix is the term proportional to the diffusion
coefficient in Eq. (22), since it is this that enforces its diagonalization.

The decoherence tintg sets the scale after which we have a classical system-
field configuration. According to our previous discussion, it can be defined as the
solution to

<

exp[ — Vl“/ot ds Dx(s)} . (22)

‘ = exp[—Es2 p~ ()], (23)
m

1RVr ds IXs). (24)
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It corresponds to the time after which we are able to distinguish between two
different field amplitudes (inside a given volurk.

Suppose we reduce the couplirigs. of the systeng field to its environment.
Since, as a one-loop construtt,c g2, A2 our first guess would be that as A
decreasd, increases and the system takes longer to become classical. This is not
really the case. The reason is twofold. First, there is the effectthatTZ, and
TO2 « A~tis nonperturbatively large for a phase transition. Second, because of the
nonlinear coupling to the environment, obligatory for quantum field thdory,

#°. The completion of the transition fing€ ~ 52 o A~* also nonperturbatively
large. This suggests that and hencép, can be independent af The situation
would be different for a linear coupling to the environment, for whj},zh/vould

not be present, or a cold initial state in whiglis peaked about = 0. In fact, the
situation is a little more complicated, but the corollary thiatioes not exceetd,

as the couplings become weaker remains true.

_Inorderto quantify the decoherence time we have to fix the valu¢sdfand

¢.V is understood as the minimal volume inside which we do not accept coherent
superpositions of macroscopically distinguishable states for the field. Thus, our
choice is that this volume factor @(x2) sincex ! (the Compton wavelength)

is the smallest scale at which we need to look. Inside this volume, we do not
discriminate between field amplitudes which differ &), and therefore we
takes ~ O(1). Forg we setqj_2 ~ O(a/X), wherer < o < 1is to be determined
self-consistently.

Note that the diagonalisation @f occurs in time as aexponentialof an
exponential As a result, decoherence occurs extremely quickly, but not so quickly
thatut « 1. Consequently, in order to evaluate the decoherence time in our model,
we have to use Eg. (21). On taking the equality in (24) we find

/NG VN
Fa O\ a )

exp[2utp] ~ (25)

o

whereby

N 1 1 N n
MtD_Z InN—EIna_ In(_l_cﬁ).
This is anupperbound ontp, but probably still qualitatively correct. The value of
« is determined as ~ /u/ T, from the condition that, at time, (|¢|%); ~ an?.
Sincea « 1, in principle, the field has not diffused far from the top of the hill
before it is behaving classically.
For comparison, we fint,, for which (¢2); ~ n?, given by

)72
explautsd ~ O (). (26)
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The exponential factor, as always, arises from the growth of the unstable long-
wavelength modes. The fact®r? comes from the coti{w/2) factor that encodes
the initial Boltzmann distribution at temperaturex T.. As a result,

ity ~ In ( W’Z_T) , (27)

whereby 1< putp < utsp, with

1, (T
ptsp— utp = > In (—°> > 1, (28)
4 \nu

for weak enough coupling, or high enough initial temperatures (we have taken
To ~ Tcthroughout). This is our main result, that for the physically relevant modes
(with smallkp) classical behavior has been established before the spinodal time,
when the ground states have became populated.

3.5. Back-Reaction

We can now justify our earlier assumption that for an instantaneous quench,
nonlinear behavior only becomes important just before the spinodal time (Karra
and Rivers, 1997). To see this, we adopt the Hartree approximation, in which the
equations of motion are linearized so that the field modésnow satisfy the
equation

d2 2 2 +
where (Boyanovskgt al, 1994, 1995; Ramsey and Hu, 1997)

d*p _
—pA(t) = m*(t) + 41/ @y C(p)[ () fy(t)—1] (29)

andC(p) = (cothBw/2)/2w, w? = p? + m2.

A similar result would be obtained by extending our inif(2) theory to an
O(M) theory in the largeM limit before takingM = 2.

Our coarse-graining retains only the unstable modes in the integral, which
suggests (Karra and Rivers, 1997) the approximate hybrid self-consistent equation
for p2(t),

Tu t
2(t) ~ u? — Cr———— ex <2/ dt’ t’) 30
po(t) = p G P2, () (30)
(C = O(1)), which has the exponential growth of the WKB solution, but non-

singular behavior whem(t) ~ 0. The exact solution to Eq. (30) far< tsp is
u(t) = p tanhpu(tsy — t), irrespective of the values of the temperatlirand the
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coupling strength. In fact, we anticipated this in (27), when we estimigemh

the assumption that the back-reaction would only take effect in the final moments.
That is, the theory only ceases to behave like a free Gaussian theory with

upside-down potential at a timg,

tsp—tg = O(M_l)' (31)

It follows thattg > tp in our ordering of scale$; > u, but in practicel. needs
to be at least an order of magnitude larger thafor this to be the case.

When (28) is valid, we see that becomes diagonal before nonlinear terms
could be relevant. In this sense, classical behavior has been achieved before quan-
tum effects could destroy the positivity of the Wigner functidh

4. FINAL REMARKS

We have shown that in our model, becomes diagonal before the spinodal
time at which the order parameter field has first populated the ground-state values
of the theory. Further, it can also be diagonal before nonlinear terms are relevant.
That is, decoherence can be achieved before quantum effects destroy the positivity
of the Wigner functionW;. Really, ourtp sets the time after which we have a
classical probability distribution (positive definite) even for times tg,. The
existence of the environment is crucial in doing this. Of course, for non-Gaussian
or delocalized (in the field space) initial states, itis clearawill be nonpositive
definite even in the linear regime, and therefyghould be smaller than the one
we evaluated here. In the present wdgkis theclassicalization timéound.

This result goes in the direction of justifying the use of classical numerical
simulations for the analysis of the dynamics of the long-wavelengths modes after
the quench.
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